Abstract

Combining the simplified interpolating moving least-squares (IMLS) method with the Galerkin weak form, an interpolating element-free Galerkin (IEFG) method is presented for the numerical study of the regularized long wave (RLW) equation. The trial function in the IMLS method has one less unknown coefficient than in the traditional MLS approximation, and the shape functions satisfy the interpolating property at nodes. Then the IEFG method can apply the essential boundary conditions naturally and directly, and has high computational accuracy. And then this paper studies the error estimates of the IEFG method for RLW equation. The error estimate of the semi-discrete IEFG method for the RLW equation on the influence domain radius is first studied, and then the convergence rate of the full discrete scheme of the method on the influence domain radius and time step is studied. The theoretical results show that the IEFG method for RLW equation has good convergence rate. For the purpose of demonstration, three selected numerical examples are given to demonstrate the method and the mathematical theory of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.