Abstract
Summary form only given. Two methods for interpolating the distanced bigram language model are examined which take into account pairs of words that appear at varying distances within a context. The language models under study yield a lower perplexity than the baseline bigram model. A word clustering algorithm based on mutual information with robust estimates of the mean vector and the covariance matrix is employed in the proposed interpolated language model. The word clusters obtained by using the aforementioned language model are proved more meaningful than the word clusters derived using the baseline bigram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.