Abstract

Although they were discovered almost four decades ago, Cu(I) diimine complexes have emerged as a group of transition metal complexes that can play important roles in solar energy conversion and utilization, and have potential to replace the quintessential ruthenium polypyridyl complexes as light sensitizers, electron donors and catalytic centers. This review includes some recent photophysical studies and transient structural studies of Cu(I) diimine complexes using ultrafast optical transient absorption and emission as well as X-ray transient absorption spectroscopy. The main focus is on identifying the key structural factors that influence the excited-state properties, such as structural reorganization, intersystem crossing and solvent quenching, with these relatively new techniques on the ultrafast time scales. Ultimately, these structural factors can be used to rationally control the energetics and dynamics of the MLCT state during the light conversion processes. This insight will serve as guidance for material design using Cu(I) diimine complexes as building blocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.