Abstract
We introduce a nonlinear Schrödinger equation (NLSE) which combines the pseudo-stimulated-Raman-scattering (pseudo-SRS) term, i.e., a non-conservative cubic one with the first spatial derivative, and an external potential, which helps to stabilize solitons against the pseudo-SRS effect. Dynamics of solitons is addressed by means of analytical and numerical methods. The quasi-particle approximation (QPA) for the solitons demonstrates that the SRS-induced downshift of the soliton's wavenumber may be compensated by a potential force, producing a stable stationary soliton. Three physically relevant potentials are considered: a harmonic-oscillator (HO) trap, a spatially periodic cosinusoidal potential, and the HO trap subjected to periodic temporal modulation. Both equilibrium positions of trapped pulses (solitons) and their regimes of motion with trapped and free trajectories are accurately predicted by the QPA and corroborated by direct simulations of the underlying NLSE. In the case of the time-modulated HO trap, a parametric resonance is demonstrated, in the form of the motion of the driven soliton with an exponentially growing amplitudes of oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.