Abstract

Recent data indicated a nuclear rainbow-like pattern in the elastic scattering of 16O + 27Al at $ E_{lab}=100$ MeV that arises from couplings of the ground to the low-lying states of the 27Al nucleus. Similar effect was identified in the elastic angular distribution of 16O + 12C at $ E_{lab}=281$ and 330 MeV. These experiments show a crucial role of microscopic details of nuclear structure in the elastic scattering of heavy ions at energies well above the Coulomb barrier. In this work we investigate the 16O + 27Al system at $ E_{lab}=280$ MeV for which a coupled channel calculation predicts a pronounced nuclear rainbow-like structure. Obtained experimental data show evidences of an important coupling of the elastic channel to the inelastic. Coupled channel calculations reproduce the experimental angular distributions when a re-normalization factor on the real part of the optical potential is introduced. A proper theoretical approach still requires a high degree of accuracy for the nuclear structure models and new tools to deal with collective excitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.