Abstract
We investigate the influence of nanofiller surface chemistry and ion content on the conductivity of nanofilled PEO + LiClO4 solid polymer electrolytes (SPEs) using dielectric spectroscopy, differential scanning calorimetry (DSC), FESEM, and quasi-elastic neutron scattering (QENS). We consider the concentration series EO/Li = 8:1, 10:1 (eutectic composition), 14:1, with both acidic α-Al2O3 and neutral γ-Al2O3 nanoparticles. The acidic filler is more effective at increasing conductivity at the non- eutectic compositions. In contrast, the two surface chemistries provide comparable increases at the eutectic composition. This composition maximizes the influence of nanofillers, regardless of surface chemistry. We find no significant changes in crystallinity, glass transition temperature, nanoparticle dispersion, or PEO segmental dynamics as a function of surface chemistry. In the absence of salt, acidic particles slow PEO dynamics more than neutral particles, suggesting that the PEO chains and the acidic surfac...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.