Abstract

Motivated by the interplay of multiple species in several real world transport processes, we propose a bidirectional totally asymmetric simple exclusion process with two finite particle reservoirs regulating the inflow of oppositely directed particles corresponding to two different species. The system's stationary characteristics, such as densities, currents, etc., are investigated using a theoretical framework based on mean-field approximation and are supported by extensive Monte Carlo simulations. The impact of individual species populations, quantified by filling factor, has been comprehensively analyzed considering both equal and unequal conditions. For the equal case, the system exhibits the spontaneous symmetry-breaking phenomena and admits both symmetric as well as asymmetric phases. Moreover, the phase diagram exhibits a different asymmetric phase and displays a nonmonotonic variation in the number of phases with respect to the filling factor. For unequal filling factors, the phase schema can display at most five phases including a phase that shows maximal current for one of the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call