Abstract

The bifurcation stability of sandwich sector plates, primarily constructed from lead halide perovskite skins known for their significant photostrictive and electrostrictive properties, is explored. These properties render them highly relevant for multiphysics applications. The influence of a photo-induced thermal environment on the behavior of these plates is also examined. A notable challenge, the inherent stiffness of these structures, is addressed by integrating a nanocomposite laminated core composed of a polymer matrix and graphene platelet (GPL) reinforcers. The GPLs are distributed throughout the core layers according to functionally graded models, significantly enhancing structural integrity. To effectively model the core environment, the Halpin-Tsai micromechanical rule is employed. The structural displacement field is modeled using the first-order shear deformation theory. Moreover, the von-Kármán geometrically nonlinear strain-displacement relations are applied. The constitutive relationships are governed by the theory of linear photo-thermo-electro-elasticity, providing a framework for the analysis of perovskite-based structures. The reorganization of bifurcation points from the pre-buckling route and the linearization of stability equations are performed using the adjacent-equilibrium criterion. The generalized differential quadrature (GDQ) method is utilized to solve the equilibrium equations of pre-buckling and the stability equations of buckling. This comprehensive investigation reveals the critical influence of photonic, electrical, and rotational stimuli on the stability characteristics of advanced perovskite-based sandwich sector plates, demonstrating potential advancements in multiphysics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.