Abstract

Tuning of protein surface charge is a fundamental mechanism in biological systems. Protein charge is regulated in a physiological context by pH and interaction with counterions. We report on charge inversion and the related reentrant condensation in solutions of globular proteins with different multivalent metal cations. In particular, we focus on the changes in phase behavior and charge regulation due to pH effects caused by hydrolysis of metal ions. For several proteins and metal salts, charge inversion as measured by electrophoretic light scattering is found to be a universal phenomenon, the extent of which is dependent on the specific protein-salt combination. Reentrant phase diagrams show a much narrower phase-separated regime for acidic salts such as AlCl3 and FeCl3 compared to neutral salts such as YCl3 or LaCl3. The differences between acidic and neutral salts can be explained by the interplay of pH effects and binding of the multivalent counterions. The experimental findings are reproduced with good agreement by an analytical model for protein charging taking into account ion condensation, metal ion hydrolysis, and interaction with charged amino acid side chains on the protein surface. Finally, the relationship of charge inversion and reentrant condensation is discussed, suggesting that pH variation in combination with multivalent cations provides control over both attractive and repulsive interactions between proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.