Abstract

Trade-off between mechanical flexibility due to amorphicity and highly facile charge transport emanating from molecular crystallinity demands the orientation of conjugated polymers (CPs) for their utilization as active semiconducting material for flexible organic electronics. We have already demonstrated that it is rather easy to orient nonregiocontrolled poly(3-hexylthiophenes) (NR-P3HT) as compared to their highly regioregular counterparts due to very high alkyl chain interdigitation. To provide an amicable solution, efforts have been directed to orient blends of two CPs such as NR-P3HT (amorphous and flexible) and poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) (crystalline and facile charge transport) using a solution-based procedure floating film and transfer method (FTM). FTM-processed thin films of this blend system exhibited very high field effect transistor (FET) mobility reaching up to 0.1 cm2/V s, which is much higher than the corresponding individual CPs. In spite of onl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.