Abstract

The behavior of general nonclassical two-mode Gaussian states at a beam splitter is investigated. Single-mode nonclassicality as well as two-mode entanglement of both input and output states are analyzed suggesting their suitable quantifiers. These quantifiers are derived from local and global invariants of linear unitary two-mode transformations such that the sum of input (or output) local nonclassicality measures and entanglement measure gives a global invariant. This invariant quantifies the global nonclassicality resource. Mutual transformations of local nonclassicalities and entanglement induced by the beam splitter are analyzed considering incident noisy twin beams, single-mode noisy squeezed vacuum states, and states encompassing both squeezed states and twin beams. A rich tapestry of interesting nonclassical output states is predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call