Abstract

Bcr-Abl1 kinase domain mutations are the most prevalent cause of treatment resistance in chronic myeloid leukaemia (CML). Alternate resistance pathways nevertheless exist, and cell line experiments show certain patterns in the gain, and loss, of some of these alternate adaptations. These adaptations have clinical consequences when the tumour develops mechanisms that are beneficial to its growth under treatment, but slow down its growth when not treated. The results of temporarily halting treatment in CML have not been widely discussed in the clinic and there is no robust theoretical model that could suggest when such a pause in therapy can be tolerated. We constructed a dynamic model of how mechanisms such as Bcr-Abl1 overexpression and drug transporter upregulation evolve to produce resistance in cell lines, and investigate its behaviour subject to different treatment schedules, in particular when the treatment is paused (‘drug holiday’). Our study results suggest that the presence of additional resistance mechanisms creates an environment which favours mutations that are either preexisting or occur late during treatment. Importantly, the results suggest the existence of tumour drug addiction, where cancer cells become dependent on the drug for (optimal) survival, which could be exploited through a treatment holiday. All simulation code is available at https://github.com/Sandalmoth/dual-adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call