Abstract

Accumulating evidence suggests that amyloid plaque associated myelin lipid loss as a result of elevated amyloid burden might also contribute to Alzheimer's disease. The amyloid fibrils though closely associated with lipids under physiological conditions, however, the progression of membrane remodeling events leading to lipid-fibril assembly remains unknown. Here we first reconstitute the interaction of Aβ-40 with myelin-like model membrane and show that the binding of Aβ-40 induces extensive tubulation. To look into the mechanism of membrane tubulation we chose a set of membrane conditions varying in lipid packing density and net charge that allows us to dissect the contribution of lipid specificity of Aβ-40 binding, aggregation kinetics, and subsequent changes in membrane parameters such as fluidity, diffusion, and compressibility modulus. We show that the binding of Aβ-40 depends predominantly on the lipid packing defect densities and electrostatic interactions and results in rigidification of the myelin-like model membrane during the early phase of amyloid aggregation. Furthermore, elongation of Aβ-40 into higher oligomeric and fibrillar species leads to eventual fluidization of the model membrane followed by extensive lipid membrane tubulation observed in the late phase. Taken together, our results capture mechanistic insights into snapshots of temporal dynamics of Aβ-40 - myelin-like model membrane interaction and demonstrate how short timescale, local phenomena of binding, and fibril-mediated load generation results in the consequent association of lipids with growing amyloid fibrils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call