Abstract

The magnetic properties of iron pnictide superconductors with magnetic rare-earth ions under strong magnetic field are investigated based on the cluster self-consistent field method. Starting from an effective Heisenberg model, we present the evolution of magnetic structures on magnetic field in R/FeAsO (R = Ce, Pr, Nd, Sm, Gd, and Tb) and R/Fe2As2 (R = Eu) compounds. It is found that spin-flop transition occurs in both rare-earth and iron layers under magnetic field, in good agreement with the experimental results. The interplay between rare-earth and iron spins plays a key role in the magnetic-field-driven magnetic phase transition, which suggests that the rare-earth layers can modulate the magnetic behaviors of iron layers. In addition, the factors that affect the critical magnetic field for spin-flop transition are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call