Abstract
Four different kinds of photovoltaic polymers were synthesized by controlling the intrachain noncovalent coulomb interactions through the incorporation of alkoxy- or alkylthio-substituted phenylene, 4,7-di(furan-2-yl)benzothiadiazole, and 4,7-di(thiophen-2-yl)benzothiadiazole as a building block. Fine modulation of the interplay of dipole–dipole, H-bond, and chalcogen–chalcogen interactions (O···S, O···H, S···S, S···F, etc.) along the polymeric backbone influenced the chain planarity, interchain organization, film morphology, and electrical and photovoltaic properties significantly. By replacing the alkoxy substituents with alkylthio groups, the torsional angle increased (136–168°) due to the absence of an O···S attractive coulomb interaction (and/or increased S···S steric hindrance), enhancing the amorphous nature with hindered interchain packing. The alkoxy-substituted polymers exhibited nanofibrillar structures, showing strong interlamellar scattering peaks up to (300) with tight face-on π–π stacking i...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.