Abstract

β-catenin mediates Wnt/wingless signaling and transcriptional activation by lymphocyte enhancer binding factor 1/T cell factor (LEF1/TCF) proteins with the assistance of multiple coregulators, including positive cofactors like p300/CBP and negative cofactors like HDACs. We previously demonstrated that a developmentally essential protein, Flightless-I (Fli-I), serves as a coactivator for nuclear receptor-mediated transcription. To further understand the action mechanism of Fli-I, we investigated the functional roles of Fli-I and Fli-I leucine rich repeat associated protein 1 (FLAP1) in transcriptional activation by β-catenin and LEF1/TCF. β-catenin-dependent transcription was activated by exogenous FLAP1 but inhibited by Fli-I. Reduction of endogenous FLAP1 levels compromised transcriptional activation by LEF1/TCF, β-catenin and the p160 coactivator GRIP1. FLAP1 interacted directly with β-catenin, GRIP1 and p300 and enhanced their activity. Furthermore, FLAP1 was strongly synergistic with p300 in supporting transcriptional activation by β-catenin and LEF1/TCF, but Fli-I disrupted the synergy of FLAP1 with p300 and β-catenin. Thus the opposing effects of Fli-I and FLAP1 may be a key regulatory mechanism for β-catenin and LEF1/TCF-mediated transcription and thus for Wnt signaling, and some mutations of Fli-I may result in developmental defects, such as the flightless phenotype of Drosophila, by causing dysregulation of the Wnt/β-catenin pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.