Abstract

As far as fundamental knowledge is concerned, the methyl derivatives of uracil can be considered as the simplest objects for studying the structural effects due to the substitution in the pyrimidyne nucleobases. From this point of view, 1-methyluracil is of special importance in biochemistry because uracil attaches ribose in ribonucleic acid (RNA) just precisely at the N1 atom. The semi-experimental equilibrium structure (r(e)(se)) of 1-methyluracil has been determined for the first time by the gas electron diffraction (GED) method taking into account rovibrational corrections to the thermal-average internuclear distances calculated with harmonic and anharmonic (cubic) MP2/cc-pVTZ force constants with consideration of the methyl torsion as a large-amplitude motion. For the first time, the structure of the molecule has been optimized by the very time-consuming coupled-cluster method with single and double excitations and perturbative treatment of connected triples using the correlation-consistent polarized weighted core-valence triple-ζ basis set with all electrons being correlated (CCSD(T)(all)/cc-pwCVTZ) and extrapolated to the complete basis set (CBS) with the help of the MP2 calculations. Small differences between similar bond lengths of equilibrium configurations were assumed in the GED analysis at the CCSD(T)(all)/CBS values. A remarkable agreement between the semi-experimental and computed equilibrium structures points out the high accuracy of both the GED determination and the coupled-cluster computations. The effect of methylation on the structure of uracil has been analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.