Abstract

We investigate the interplay of the electron-electron and electron-phonon interactions in the electronic structure of an exotic insulating state in the layered dichalcogenide 1T-TaS2, where the charge-density-wave (CDW) order coexists with a Mott correlation gap. Scanning tunneling microscopy and spectroscopy measurements with high spatial and energy resolution determine unambiguously the CDW and the Mott gap as 0.20-0.24 eV and 0.32 eV, respectively, through the real space electron phases measured across the multiply formed energy gaps. An unusual local reduction of the Mott gap is observed on the defect site, which indicates the renormalization of the on-site Coulomb interaction by the electron-phonon coupling as predicted by the Hubbard-Holstein model. The Mott-gap renormalization provides new insight into the disorder-induced quasi-metallic phases of 1T-TaS2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call