Abstract
In an all-solid-state battery, the electrical contact between its individual components is of key relevance in addition to the electrochemical stability of its interfaces. Impedance spectroscopy is particularly suited for the non-destructive investigation of interfaces and of their stability under load. Establishing a valid correlation between microscopic processes and the macroscopic impedance signal, however, is challenging and prone to errors. Here, we use a 3D electric network model to systematically investigate the effect of various electrode/sample interface morphologies on the impedance spectrum. It is demonstrated that the interface impedance generally results from a charge transfer step and a geometric constriction contribution. The weights of both signals depend strongly on the material parameters as well as on the interface morphology. Dynamic constriction results from a non-ideal local contact, e.g., from pores or voids, which reduce the electrochemical active surface area only in a certain frequency range. Constriction effects dominate the interface behavior for systems with small charge transfer resistance like garnet-type solid electrolytes in contact with a lithium metal electrode. An in-depth analysis of the origin and the characteristics of the constriction phenomenon and their dependence on the interface morphology is conducted. The discussion of the constriction effect provides further insight into the processes at the microscopic level, which are, e.g., relevant in the case of reversible metal anodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.