Abstract

A new design was applied for the facile synthesis of pure organic photoluminescent molecules with dual excited-state intramolecular proton transfer (ESIPT) sites. In this novel class of emitters, full-color panel emission from blue, green, and yellow to red, including white light, can be achieved in different solvents as modulated by the enol-keto(1st)-keto(2nd) tautomer emissions. A comprehensive transient photophysical study verifies that keto(1st) and keto(2nd) have a precursor (<0.8 ps)-successor (∼20 ps)-relayed absorbance relationship, and then a fast equilibrium between the two is established, resulting in dual emissions in the nanosecond scale (∼1900 ps). Through the research on copper ions' selective PL response, the dual-ESIPT mechanism was further verified; in addition, the study of solid-state PL changes upon the stimulus of organic vapor manifests the potential application sensitivity of the molecules as dual-ESIPT sensors. Theoretical results including reaction potential energy surface analyses manifest the fact that dual-proton transfer goes along a sequential route with a smaller energy barrier, firmly supporting the experimental results. An intrinsic system that undergoes intramolecular double proton relayed transfer is thus established for the achievement of much broadened optical responses and full-color display, providing reference for the design and application of advanced dual-ESIPT optical materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call