Abstract

Crowding effects have a profound impact on the hierarchical organization of cellular architectures. In the fields of systems chemistry and soft matter, this effect has not received much attention so far. Here, it is explored how poly(ethylene glycol) (PEG) as a crowding agent invokes depletion forces that act on synthetic supramolecular tubes. Hence, supramolecular tubes are pushed from their random orientation into hierarchically assembled bundles due to the PEG-induced crowded environment. The resulting morphology of formed bundled architectures can be tuned by the concentrations of both the supramolecular tubes and the PEG. The introduction of biotin groups at the surface of the tubes allows the engineering of biotin-streptavidin crosslinks between them. The order of introducing PEG and streptavidin in the system further affects the formed hierarchical assemblies, as well as their resistance toward dilution. The strategy described here provides a new route to establish hierarchically organized supramolecular architectures, combining crowding and specific biomolecular interactions, which shows the potential for controlling the structure of supramolecular materials and other soft matter systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.