Abstract

The primary physical and chemical processes in the photochemistry of 1-(trideuteromethyl)-2,3,4-trideutero (1) and 1-acetoxy-2-methoxy-(2) 9,10-anthraquinones were studied using femtosecond transient absorption spectroscopy and computational chemistry. Excitation of 1 and 2 at 270 nm results in the population of a set of highly excited singlet states which decay within the laser pulse by internal conversion and vibrational energy redistribution. The transient absorption spectra of the lowest singlet and triplet excited states of substituted anthraquinones 1 and 2 as well as the triplet excited and ground states of the products were detected. The assignments of the transient absorption spectra were performed on the basis of quantum chemical calculations of the electronic absorption spectra of the intermediates. Time-dependent density functional theory or CASSCF/CASPT2 procedure were used to calculate the spectroscopic properties of the intermediates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.