Abstract
The structure and reorientational dynamics of KB3H8 were studied by using quasielastic and inelastic neutron scattering, Raman spectroscopy, first-principles calculations, differential scanning calorimetry, and in situ synchrotron radiation powder X-ray diffraction. The results reveal the existence of a previously unknown polymorph in between the α′- and β-polymorphs. Furthermore, it was found that the [B3H8]− anion undergoes different reorientational motions in the three polymorphs α, α′, and β. In α-KB3H8, the [B3H8]− anion performs 3-fold rotations in the plane created by the three boron atoms, which changes to a 2-fold rotation around the C2 symmetry axis of the [B3H8]− anion upon transitioning to α′-KB3H8. After transitioning to β-KB3H8, the [B3H8]− anion performs 4-fold rotations in the plane created by the three boron atoms, which indicates that the local structure of β-KB3H8 deviates from the global cubic NaCl-type structure. The results also indicate that the high reorientational mobility of the [B3H8]− anion facilitates the K+ cation conductivity, since the 2-orders-of-magnitude increase in the anion reorientational mobility observed between 297 and 311 K coincides with a large increase in K+ conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The journal of physical chemistry. C, Nanomaterials and interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.