Abstract

Protein phosphorylation and dephosphorylation mediated by protein kinases and protein phosphatases, respectively, represent essential steps in a variety of vital neuronal processes that could affect susceptibility to ischemic stroke. In this study, the role of the neuron-specific gamma isoform of protein kinase C (gammaPKC) in reversible focal ischemia was examined using mutant mice in which the gene for gammaPKC was knocked-out (gammaPKC-KO). A period of 150 minutes of unilateral middle cerebral artery and common carotid artery (MCA/CCA) occlusion followed by 21.5 hours of reperfusion resulted in significantly larger (P < 0.005) infarct volumes (n = 10; 31.1+/-4.2 mm3) in gammaPKC-KO than in wild-type (WT) animals (n = 12; 22.6+/-7.4 mm3). To control for possible differences related to genetic background, the authors analyzed Balb/cJ, C57BL/6J, and 129SVJ WT in the MCA/CCA model of focal ischemia. No significant differences in stroke volume were detected between these WT strains. Impaired substrate phosphorylation as a consequence of gammaPKC-KO might be corrected by inhibition of protein dephosphorylation. To test this possibility, gammaPKC-KO mice were treated with the protein phosphatase 2B (calcineurin) inhibitor, FK-506, before ischemia. FK-506 reduced (P < 0.008) the infarct volume in gammaPKC-KO mice (n = 7; 24.6+/-4.6 mm3), but at this dose in this model, had no effect on the infarct volume in WT mice (n = 7; 20.5+/-10.7 mm3). These results indicate that gammaPKC plays some neuroprotective role in reversible focal ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call