Abstract

We demonstrate the interplay between surface recombination dynamics and environmental temperature in UV photoresponse of ZnO nanowire field effect transistors (FETs) with and without a passivation layer. We find that optoelectronic performance and photoresponse mechanism can be significantly altered by temperature, influencing surface chemical interaction and reaction associated with charge trapping. Particularly, regardless of surface passivation on nanowires, photocurrent gains and decay rate are drastically enhanced with increasing temperature. Furthermore, the temperature dependence of photoresponse behavior in nanowire FETs is discussed in terms of surface recombination rates, carrier concentration, surface potential barrier height, and charge trapping rates on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.