Abstract
AbstractField data from an orogenic foreland and an orogenic belt (the Mesozoic rocks of southern England and the Umbria‐Marche Apennines of Italy respectively) indicate the following. Firstly, stress evolution during the tectonic cycle, between maximum compressive stress (σ1) being vertical during extension and least compressive stress (σ3) being vertical during contraction, can involve phases when the intermediate compressive stress (σ2) is vertical, promoting strike‐slip deformation. Secondly, variations in the relative magnitudes of the stress axes are caused by variations in overburden and tectonic forces. Thirdly, overpressure can develop because of compaction during burial, and, as overburden is reduced during uplift and erosion, the vertical stress (σV) reduces but fluid pressure (Pf) remains approximately constant. Brittle deformation, including transient strike‐slip faults, reverse‐reactivated normal faults and normal‐reactivated thrusts, is preferentially developed in overpressured areas because high Pf promotes faulting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.