Abstract
In this paper, we propose a coupled multiplex network framework to model the epidemic spreading and its corresponding information diffusion among a population. In the model, as far as the information perception on the epidemics is concerned, the individuals can be divided into two classes, namely aware or unaware ones; Meanwhile, the awareness diffusion is depicted by utilizing the traditional contact process. From the perspective of infectious disease spreading, the contagion dynamics among nodes can be characterized with the classic SIR (susceptible–infective–recovered) model. Based on the microscopic Markov chain approach, we build the probability tree to describe the switching process between different states, and then intensively perform the theoretical analysis for the state transition. In particular, we analytically derive the epidemic threshold regarding the disease propagation, which is correlated with the multiplex network topology and the coupling relationship between two transmission dynamics. After being compared with extensive numerical Monte Carlo (MC) simulations, it is clearly found that the achieved analytical results concur with the MC simulations. Current results will be beneficial to substantially enhance the predictability of the epidemic outbreaks within many realistic dissemination cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.