Abstract

We present a theoretical model for predicting the phase behavior of polymer solutions in which phase separation competes with oligomerization. Specifically, we consider scenarios in which the assembly of polymer chains into stoichiometric complexes prevents the chains from phase-separating via attractive polymer-polymer interactions. Combining statistical associating fluid theory with a two-state description of self-assembly, we find that this model exhibits rich phase behavior, including reentrance, and we show how system-specific phase diagrams can be derived graphically. Importantly, we discuss why these phase diagrams can resemble-and yet are qualitatively distinct from-phase diagrams of polymer solutions with lower critical solution temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.