Abstract
In superconducting nanofilms the energy quantization induced by the confinement in the direction perpendicular to the film splits the band of single-electron states into series of subbands. The quantum size effect leads to the experimentally observed oscillations of the critical magnetic field with increasing nanofilm thickness. Here, we study the influence of the quantum confinement on the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase in superconducting nanofilms. We show that the range of the magnetic fields for which the FFLO phase is stable oscillates as a function of the film thickness with the phase shift equal to one half of the period corresponding to the critical magnetic field oscillations. Due to the multiband character of the system a division of the FFLO phase stability region appears leading to a phase diagram which is qualitatively different than the one corresponding to a single-band situation. The number of subregions created in such manner depends on the number of bands participating in the formation of the paired state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.