Abstract

The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro. Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K+/EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K+/EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).

Highlights

  • Continuous change in membrane and membrane skeleton organization takes place during development from proerythroblasts to senescent red blood cells (RBCs)

  • Several lines of evidence provided in this study indicated that the RBC plasma membrane was strongly altered during storage in K+/EDTA tubes

  • The membrane lipid components were not randomly modified during storage, exhibiting a decrease of membrane cholesterol and linoleic acid at the benefit of long chain polyunsaturated FA (PUFA) and a slight increase of lipid peroxidation. All those lipid modifications should contribute to affect the RBC morphology and functionality since (i) cholesterol and linoleic acid have all a rather fluidizing effect (Heron et al, 1980; Hochgraf et al, 1997), their decline being compatible with the increased membrane rigidity revealed by Laurdan and AFM; (ii) long chain PUFA are able to modulate Piezo1 channel

Read more

Summary

Introduction

Continuous change in membrane and membrane skeleton organization takes place during development from proerythroblasts to senescent red blood cells (RBCs). R1 reticulocytes undergo significant rearrangements in their membrane and intracellular components via several mechanisms including exosome release. Circulating R2 reticulocytes complete this maturational process, which involves additional loss of significant amounts of membrane and selected membrane proteins (Minetti et al, 2018, 2020). Membrane remodelling and vesicle formation occur during RBC ageing (Ciana et al, 2017b). Have proposed that generation of extracellular vesicles (EVs) constitutes a mechanism for the elimination of RBC membrane patches containing removal molecules, thereby postponing the untimely elimination of otherwise healthy RBCs (Willekens et al, 2008). Current knowledge indicates that part of the membrane skeleton is probably lost together with part of the lipid bilayer in a balanced way (Ciana et al, 2017a)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call