Abstract

Films of L11-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (tNiFe = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying tNiFe and the perpendicular magnetic anisotropy of L11-type CoPt/NiFe films cannot sustain for tNiFe larger than 3.0 nm due to the existence of exchange interaction at the interface of L11-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when tNiFe ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying tNiFe from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the tNiFe investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L11-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.