Abstract

We discuss the current induced magnetization dynamics of spin valves F(0)|N|SyF where the free layer is a synthetic ferrimagnet SyF made of two ferromagnetic layers F(1) and F(2) coupled by RKKY exchange coupling. When the magnetic moment of the outer layer F(2) dominates the magnetization of the SyF, the sign of the effective spin torque exerted on the layer F(1) is controlled by the coupling's strength: for weak coupling the spin torque tends to antialign F(1)'s magnetization with respect to the pinned layer F(0). At large coupling the situation is reversed and tends to align F(1) with respect to F(0). At intermediate coupling, numerical simulations reveal that the competition between these two incompatible limits leads generically to spin torque oscillator (STO) behavior. The STO is found at zero magnetic field, with very significant amplitude of oscillations and frequencies up to 50 GHz or higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call