Abstract

The non-Markovianity of open quantum system dynamics is often associated with the bidirectional interchange of information between the system and its environment, and it is thought to be a resource for various quantum information tasks. We have investigated the non-Markovianity of the dynamics of a two-state system driven by continuous time random walk-type noise, which can be Markovian or non-Markovian depending on its residence time distribution parameters. Exact analytical expressions for the distinguishability as well as the trace distance and entropy-based non-Markovianity measures are obtained and used to investigate the interplay between the non-Markovianity of the noise and that of dynamics. Our results show that, in many cases, the dynamics are also non-Markovian when the noise is non-Markovian. However, it is possible for Markovian noise to cause non-Markovian dynamics and for non-Markovian noise to cause Markovian dynamics but only for certain parameter values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.