Abstract

Proteasome activity at the excitatory synapse plays an important role in neuronal communication. The proteasome translocation to synapses is mediated by neuronal activity, in particular the activation of N-methyl-d-aspartate receptors (NMDARs). These receptors are composed of different subunits with distinct trafficking properties that provide various signalling and plasticity features to the synapse. Yet whether the interplay between the proteasome and NMDAR relies on specific subunit properties remain unclear. Using a combination of single molecule and immunocytochemistry imaging approaches in rat hippocampal neurons, we unveil a specific interplay between GluN2B-containing NMDARs (GluN2B-NMDARs) and the synaptic proteasome. Sustained proteasome activation specifically increases GluN2B-NMDAR (not GluN2A-NMDAR) lateral diffusion. In addition, when GluN2B-NMDAR expression is downregulated, the proteasome localization decreases at glutamatergic synapses. Collectively, our data fuel a model in which the cellular dynamics and location of GluN2B-NMDARs and proteasome are intermingled, shedding new lights on the NMDAR-dependent regulation of synaptic adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.