Abstract

To understand the interplay between nematic fluctuation and superconductivity in iron-based superconductors, we performed a systematic study of the realistic two-orbital Hubbard model at intermedium correlation regimes by using the constrained-path quantum Monte Carlo method. Our numerical results showed that the on-site nematic interaction induces a strong enhancement of nematic fluctuations at various momentums, especially at (). Simultaneously, it was found that the on-site nematic interaction suppresses the antiferromagnetic order and long-range electron pairing correlations for dominant pairing channels. Our findings suggest that on-site nematic fluctuation seems to compete with superconductivity in iron-based superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.