Abstract
Chirality is a design feature of a number of biomolecules (e.g., collagen). In these molecules, cholesteric (chiral-nematic) behavior emerges from a combination of the tendency for the biopolymers to align (nematic interactions) and for the alignment direction to change with position, rotating around an axis normal to the alignment direction. This paper presents self-consistent field theory (SCFT) of chiral-nematic polymers, which takes into account polymer flexibility and the orientational degrees of freedom of polymer segments. Using the resulting SCFT, we construct a phase diagram showing regions of stability for isotropic, nematic, and cholesteric phases. Furthermore, we find that nematic interactions can stabilize the cholesteric phase, pushing the isotropic-cholesteric phase transition to lower cholesteric interaction strength, until the isotropic-nematic-cholesteric triple point is reached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.