Abstract

Bi2S3 nanocrystals with different shapes and sizes are obtained by a hot injection approach using bismuth neodecanoate and thiolamine as bismuth and sulfur precursors. The colloid morphology, from nanodots to nanorods, with sizes ranging from 3–4 nm to 40–50 nm strongly depends on the preparation conditions such as injection temperature and ratio of Bi/S precursors and ultimately impacts the optical and electrical properties of the final nanocrystals. The resulting products are analyzed using X-ray powder diffraction (XRD), transmission electron microscope (TEM), UV–vis absorption spectroscopy, and photoluminescence spectroscopy (PL). A blue shift in the band gap is observed at 1.87, 1.89, and 2.04 eV as we go from nanodots to nanorods with aspect ratios of 3, 5, and 1, respectively. These observations indicate quantum confinement effects due to the different diameters of nanocrystals. The crystallinity and morphology of nanocrystals influence significantly the PL emission, decreasing for nanodots and increasing for nanorods with the high aspect ratio. It also results in the variation in electronic structure from X-ray photoelectron spectroscopy (XPS) and ultraviolet photoemission (UPS) characterization that the valence band maximum shifts to low-energy level corresponding to the samples with aspect ratios of 3, 5, and 1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.