Abstract

In this study, molybdenum doping of anatase TiO2, used as a Pt catalyst support, both augments resistance against the carbon corrosion that commonly occurs in oxygen reduction reaction (ORR) Pt/C catalysts and promotes the generation of oxygen vacancies that allow better electron transfer from the nanosupport to Pt, thereby facilitating the oxygen dissociation reaction. The effects of the oxygen vacancies within the Mo-doped TiO2 nanosupport on ORR activity and stability are investigated both experimentally and by density functional theory analysis. The mass activity of Pt-supported molybdenum-doped anatase TiO2 is shown to be 9.1 times higher than that of a commercial standard Pt/C catalyst after hydrogen reduction. The oxide-supported nanocatalysts also show improved stability against Pt sintering under during cycling, because of strong metal–support interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.