Abstract

Release of adrenaline by chromaffin cells occurs through a process involving docking and then fusion of a secretory vesicle to the cytoplasmic membrane of the cell. Fusion proceeds in two main stages. The first one leads to the creation of a stable fusion pore passing through the two membranes and which gives a constant release flux of neurotransmitter (pore-release stage). After a few milliseconds, this initial stage which is not investigated here proceeds through a sudden enlargement of the initial pore (full-fusion stage) up to the complete incorporation of the vesicle membrane into that of the cell and total exposure of the initial matrix vesicle core to the extracellular fluid. The precise time-resolved dynamics of the release and of the vesicle membrane during the full-fusion phase can be extracted with a precision never achieved so far by de-convolution of experimental chronoamperometric currents monitored during individual exocytotic secretion events. The peculiar dynamics of the vesicle membrane proves that exocytotic events are powered by the swelling of the matrix polyelectrolyte core of the vesicle, although they are kinetically regulated by diffusion in the matrix and by the dynamics of the vesicle and cell membranes. Two simple theoretical models based on the dynamics of pores are developed to account for these dynamics and are shown to predict behaviors which are essentially identical to the experimental ones. This offers a new view of the kinetic grounds which control the full-fusion stage, and therefore provides a new interpretation of the sudden transition between the pore-release and the full-fusion stages. This transition occurs when the increasing membrane surface tension energy due to the refrained internal swelling pressure overcomes the edge energy of the pore, so that the initial fusion pore becomes unstable and is disrupted. This new view predicts that secretory vesicles which contain matrixes energetically similar to those of the adrenal cells investigated here can be separated into two classes according to their radius and catecholamine content. Small vesicles (less than ca. 25 nm radius, and containing less than ca. 20 000 molecules) should always release through pores. Larger vesicles should always end into fusing except if another mechanism closes the pore before ca. 10 000 molecules of catecholamines have been released.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call