Abstract

Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call