Abstract

Combined experimental and density functional theory (DFT) study of Pr0.75Gd0.25ScGe and its hydride (Pr0.75Gd0.25ScGeH) reveals intricacies of composition-structure-property relationships in those distinctly layered compounds. Hydrogenation of the intermetallic parent, crystalizing in a tetragonal CeScSi-type structure, leads to an anisotropic volume expansion, that is, a(=b) lattice parameter decreases while the lattice expands along the c direction, yielding a net increase of cell volume. DFT calculations predict an antiparallel coupling of localized Gd and Pr magnetic moments in both materials at the ground state. While experiments corroborate this for the parent compound, there is no conclusive experimental proof for the hydride, where Pr moments do not order down to 3 K. DFT results also reveal that rare-earth – hydrogen interactions reduce spin-polarization of the Pr and Gd 5d and Sc 3d states at the Fermi energy, disrupt indirect exchange interactions mediated by conduction electrons, dramatically reduce the magnetic ordering temperature, and open a pseudo-gap in the majority-spin channel. Both experiments and theory show evidence of Kondo-like behavior in the hydride in the absence of an applied magnetic field, whereas increasing the field promotes magnetic ordering and suppresses Kondo-like behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.