Abstract
In living and engineered systems of active particles, self-propulsion induces an unjamming transition from a solid to a fluid phase and phase separation between a gas and a liquidlike phase. We demonstrate an interplay between these two nonequilibrium transitions in systems of persistent active particles. The coexistence and jamming lines in the activity-density plane meet at the jamming transition point in the limit of hard particles or zero activity. This interplay induces an anomalous dynamic in the liquid phase and hysteresis at the active jamming transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.