Abstract

We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the steady-state sedimentation of hard sphere particles for Peclet number (Pe) ranging from 0.08 to 12. Hydrodynamic backflow causes a reduction of the average sedimentation velocity relative to the Stokes velocity. We find that this effect is independent of Pe number. Velocity fluctuations show the expected effects of thermal fluctuations at short correlation times. At longer times, nonequilibrium hydrodynamic fluctuations are visible, and their character appears to be independent of the thermal fluctuations. The hydrodynamic fluctuations dominate the diffusive behavior even for modest Pe number, while conversely the short-time fluctuations are dominated by thermal effects for surprisingly large Pe numbers. Inspired by recent experiments, we also study finite sedimentation in a horizontal planar slit. In our simulations distinct lateral patterns emerge, in agreement with observations in the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.