Abstract

This paper reports on the synthesis and self-organizing properties of monodendrons consisting of L-alanine at the focal point and alkyl chains with different length at the periphery. The structures of thin films and monolayers are studied by temperature-resolved grazing-incidence X-ray diffraction and scanning force microscopy. The interplay between H-bonding and ordering of the alkyl chains results in a rich temperature-dependent phase behavior. The monodendrons form H-bonded stabilized clusters with the number of molecules depending on the length of the aliphatic chains and temperature. The clusters play the role of constitutive units in the subsequent self-assembly. Short alkyl chains allow the material to form thermodynamically stable crystalline phases. The molecules with longer side groups exhibit additional transitions from the crystalline phase to thermotropic columnar hexagonal or columnar rectangular liquid-crystalline phases. In monolayers deposited on highly ordered pyrolytic graphite, the materials show ordering similar to thin films. However, for the compound bearing hexadecyl chains the affinity of the alkyl groups to graphite dominates the self-assembly and thereby allows epitaxial growth of a 2D lattice with flat-on oriented molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.