Abstract

Minimal Cantor systems of finite topological rank (that can be represented by a Bratteli-Vershik diagram with a uniformly bounded number of vertices per level) are known to have dynamical rigidity properties. We establish that such systems, when they are expansive, define the same class of systems, up to topological conjugacy, as primitive and recognizable S {\mathcal S} -adic subshifts. This is done by establishing necessary and sufficient conditions for a minimal subshift to be of finite topological rank. As an application, we show that minimal subshifts with non-superlinear complexity (like many classical zero-entropy examples) have finite topological rank. Conversely, we analyze the complexity of S {\mathcal S} -adic subshifts and provide sufficient conditions for a finite topological rank subshift to have a non-superlinear complexity. This includes minimal Cantor systems given by Bratteli-Vershik representations whose tower levels have proportional heights and the so-called left to right S {\mathcal S} -adic subshifts. We also show that finite topological rank does not imply non-superlinear complexity. In the particular case of topological rank two subshifts, we prove their complexity is always subquadratic along a subsequence and their automorphism group is trivial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.