Abstract

In order to limit the photogenerated charges recombination and to ensure an efficient photocatalytic degradation of RhB pollutant, a MWCNT-ZnO:Fe composite material was designed. Fe doped ZnO Nps grouped into quasi-spherical structures of about 100–250 nm were grown in situ on MWCNTs using sol-gel method. The XPS and UPS analysis allowed the identification of both Fe2+ and Fe3+ ionic species at substitutional and surface positions. The substitutional Fe3+ will generate an inverse Burstein-Moss effect and, as a result, the Fermi level is will be pushed down towards the valence band by 0.7, 0.45 and 0.29 eV for 2, 3 and 5% Fe doping respectively. The Fe doped samples show ferromagnetic behavior as determined from both ESR and magnetization measurements. The ferromagnetic order, the inverse Burstein-Moss effect, and the hole capture into the MWCNT valence band favors the charge separation of photogenerated e-h pairs and the reactive oxygen species (ROS) generation in ZnO. The proposed energy bands setup allowed to elucidate both ferromagnetic order formation and the photodegradation mechanism. Thus, an Fe doping degree of 5% ensured, besides the highest magnetization, a 97% photodegradation efficiency and a pollutant mineralization degree of 92%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.