Abstract

In patients with left ventricular assist device (LVAD), infections and thrombotic events represent severe complications. We investigated device-specific local and systemic inflammation and its impact on cerebrovascular events (CVE) and mortality. In 118 LVAD patients referred for 18F-FDG-PET/CT, metabolic activity of LVAD components, thoracic aortic wall, lymphoid and hematopoietic organs, was quantified and correlated with clinical characteristics, laboratory findings, and outcome. Driveline infection was detected in 92/118 (78%) patients by 18F-FDG-PET/CT. Activity at the driveline entry site was associated with increased signals in aortic wall (r = 0.32, p < 0.001), spleen (r = 0.20, p = 0.03) and bone marrow (r = 0.20, p = 0.03), indicating systemic interactions. Multivariable analysis revealed independent associations of aortic wall activity with activity of spleen (β = 0.43, 95% CI 0.18–0.68, p < 0.001) and driveline entry site (β = 0.04, 95% CI 0.01–0.06, p = 0.001). Twenty-two (19%) patients suffered CVE after PET/CT. In a binary logistic regression analysis metabolic activity at the driveline entry site missed the level of significance as an influencing factor for CVE after adjusting for anticoagulation (OR = 1.16, 95% CI 1–1.33, p = 0.05). Metabolic activity of the subcutaneous driveline (OR = 1.13, 95% CI 1.02–1.24, p = 0.016) emerged as independent risk factor for mortality. Molecular imaging revealed systemic inflammatory interplay between thoracic aorta, hematopoietic organs, and infected device components in LVAD patients, the latter predicting CVE and mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call