Abstract

AbstractThe Adaptive Finite Element Method (AFEM) for approximating solutions of PDE boundary value and eigenvalue problems is a numerical scheme that automatically and iteratively adapts the finite element space until a sufficiently accurate approximate solution is found. The adaptation process is based on a posteriori error estimators, and at each step of this process an algebraic problem (linear or nonlinear algebraic system or eigenvalue problem) has to be solved. In practical computations the solution of the algebraic problem cannot be obtained exactly. As a consequence, the algebraic error should be incorporated in the context of the AFEM and its a posteriori error estimators. The goal of this paper is to survey some existing approaches in the AFEM context that consider the interplay between the finite element discretization and the algebraic computation. We believe that a better understanding of this interplay is of great importance for the future development in the area of numerically solving large‐scale real‐world motivated problems. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.