Abstract

Neural ordinary differential equations have emerged as a natural tool for supervised learning from a control perspective, yet a complete understanding of the role played by their architecture remains elusive. In this work, we examine the interplay between the width p and the number of transitions between layers L (corresponding to a depth of L+1). Specifically, we construct explicit controls interpolating either a finite dataset D, comprising N pairs of points in Rd, or two probability measures within a Wasserstein error margin ɛ>0. Our findings reveal a balancing trade-off between p and L, with L scaling as 1+O(N/p) for data interpolation, and as 1+Op−1+(1+p)−1ɛ−d for measures.In the high-dimensional and wide setting where d,p>N, our result can be refined to achieve L=0. This naturally raises the problem of data interpolation in the autonomous regime, characterized by L=0. We adopt two alternative approaches: either controlling in a probabilistic sense, or by relaxing the target condition. In the first case, when p=N we develop an inductive control strategy based on a separability assumption whose probability increases with d. In the second one, we establish an explicit error decay rate with respect to p which results from applying a universal approximation theorem to a custom-built Lipschitz vector field interpolating D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.