Abstract

Understanding the regular or chaotic nature of orbits in galaxies is undoubtedly an issue of great importance. We determine the character of orbits of stars moving in the meridional plane (R, z) of an axially symmetric time-independent galactic model with a spherical central nucleus, and a flat biaxial oblate dark matter halo component. In particular, we try to reveal the influence of the fractional portion of dark matter on the structure and also on the different families of orbits of the galaxy, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when the ratio of dark matter to luminous mass varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. The investigation is carried out both in the physical (R, z) and the phase \((R,\dot {R})\) space for a better understanding of the orbital properties of the system. The numerical computations reveal that in both cases, the fractional portion of dark matter influences more or less, the overall orbital structure of the system. It was observed however, that the evolution of the percentages of all types of orbits as a function of the fractional portion of dark matter strongly depends on the particular type of space (physical or phase) in which the initial conditions of orbits are launched. The results are compared with the similar earlier work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.